TMC Develops Collision Avoidance Assist System Effective at High Speeds

November 12, 2012
Toyota City, Japan, Nov. 12, 2012 - Toyota Motor Corporation (TMC) announces that it has developed a Precollision System (PCS) with collision avoidance assist that is effective in helping mitigate even high-speed[1] collisions.

The newly developed PCS uses millimeter-wave radar to detect the risk of a rear-end collision with a preceding vehicle, with the system warning the driver via sound and display alerts to prompt braking when such a risk is detected. When the driver applies the brakes, PCS enables deceleration of up to $60 \mathrm{~km} / \mathrm{h}[2]$ by greatly increasing the braking force up to twice[3] that of the average force applied by drivers. If the brakes are not applied, automatic deceleration[4] of $15 \mathrm{~km} / \mathrm{h}$ to approximately $30 \mathrm{~km} / \mathrm{h}$ [5] is possible [6].

More than 90 percent of rear-end collisions occur when the difference in speed between the preceding and following vehicle is within $60 \mathrm{~km} / \mathrm{h} \underline{[7]}$. TMC aimed to develop a system based on real-world collision data, and has, with its newly developed system, achieved rear-end-collision reducing-effects at the highest level in the industry. The new PCS was developed to be used in a wide variety of models, and is to be rolled out starting with soon-to-be-launched models.

To contribute to the elimination of traffic accident fatalities and injuries-the ultimate goal of a society that values mobility-TMC is conducting research and development on individual onboard safety devices and systems based on its Integrated Safety Management Concept[8], an approach that gives direction to safety technology and vehicle development. TMC is pressing forward with the development of safer vehicles and technologies and is intensifying its wide-ranging traffic-safety initiatives by participating in the development of traffic environments and conducting educational traffic-safety activities.

[^0]
[^0]: [1] Research has shown that a speed of $40 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$ at the time of a rear-end collision is the range in which the number of fatal and injury-causing accidents increases [2] When the driver's car is traveling at $80 \mathrm{~km} / \mathrm{h}$ and the preceding car is traveling at $20 \mathrm{~km} / \mathrm{h}$
 [3] According to analysis of U.S. accident data
 [4] Deceleration when no brake is applied is initiated from $15 \mathrm{~km} / \mathrm{h}$
 [5] When the driver's car is traveling at $50 \mathrm{~km} / \mathrm{h}$ and the preceding car is traveling at $20 \mathrm{~km} / \mathrm{h}$
 [6] Full capabilities may not be possible in certain road environments or under certain weather conditions
 [7] Preliminary calculations from traffic accident statistics from the Institute for Traffic Accident Research and Data Analysis (ITARDA)
 [8] An approach to safety-not focused solely on independent safety systems-that seeks to provide the driver with comprehensive support in all aspects of driving

